Como hacer Análisis a los productos de una Tienda de Postres mediante Data Science – Parte 9

Data Science (Ciencia de Datos) | | Comunidad: Crear un Post, Eventos Devs, Foro

Demo

En este Post continuaré con el Capitulo Anterior Como hacer Análisis a los productos de una Tienda de Postres mediante Data Science – Parte 8 en donde realizamos Análisis de Datos de las Ventas Generales por la Tarde (12PM – 6PM) y creamos un sencillo Gráfico o Plot para visualizar estos datos, en este Post continuare con el Análisis de los siguientes datos, vamos con este Post. 

Partes

Fuente: Vecteezy

En el Capitulo 2 de este Tutorial, especifique los Datos que voy Analizar e inicié con los Datos Ventas Generales del Turno Mañana y Tarde, ahora toca analizar las ventas realizadas por la noche en la Tienda de Postres, vamos con ello.

Para mantener un orden de mis consultas voy a crear un nuevo archivo, para esto dentro de Jupyter voy a File > New Notebook > Python 3

Con esto ya tengo listo un nuevo Documento para iniciar el análisis de las Ventas realizadas por la Noche.

Datos Ventas Generales: Ventas Generales por la Noche 6 PM – 11 PM

Importare la librería pandas y le asigno el nombre de variable pd

Paso seguido creo una variable con el nombre ventas y en su interior hago la lectura del archivo ventas.json en donde se encuentran todas las ventas realizadas durante el día en la Tienda de Postres. Además crearé una variable llamada datos y dentro de ella indico las columnas para mi tabla en donde mostraré las ventas realizadas por la Noche, estas columnas son idproductoclientednifnacimientoclienteprecioimgcreated_at y updated_at

Con el código anterior voy a imprimir una Tabla con todas las ventas realizadas en la Tienda de Postres, para esto presiono el botón Run y obtengo la Tabla con las columnas que especifique en la variable datos

Para obtener las ventas realizadas en el horario de noche voy usar la columna de tipo fecha o timestamp llamada created_at esta contiene la hora, fecha, minuto, segundos y milisegundos de una venta realizada.

Voy a declarar 2 variables, una llamada hi (Hora inicial) y otra llamada hf (Hora final).

La  variable hi va contener el valor de las 6 PM (18:00:00.000000) y la variable hf contendrá el valor 11 PM (23:00:00.000000), las horas las especifico en formato de 24 horas

Nota: Las ventas que estoy analizando en todo el Tutorial se realizaron el día 16-09-2019

Ahora creo una variable con el nombre filtrar y dentro de ella hago uso de operadores lógicos en Python para filtrar las ventas realizadas desde las 6PM hasta las 11PM, para esto paso las variables hi y hf que contienen los rangos de horarios a analizar.

Consulto si la columna created_at es mayor o igual a la Hora inicial (hi) y si la columna created_at es menor o igual a la Hora final (hf)

Paso seguido voy a crear una variable llamada resultado y en su interior obtendré las ventas filtradas haciendo uso del método .loc al cual le paso la  variable filtrar

Ahora presiono el botón Run y obtengo una tabla con las ventas realizadas de 6 PM a 11 PM, es decir en el Turno Noche

Bueno ahora los datos de la tabla con las ventas realizadas en la Noche los voy a mostrar en un gráfico Plot, para esto importo la librería matplotlib.pyplot y le doy el nombre de variable plot

Luego le especifico el ancho y alto 20, 11 del gráfico, estas medidas son en pulgadas

Paso la variable resultado la cual había creado anteriormente y le indico que imprima las columnas producto y created_at

Hago clic en el botón Run y se me imprime un gráfico Plot con las ventas realizadas de 6 PM a 11 PM

Ahora dejare el código completo

Hasta aquí he terminado con el análisis de todas las ventas realizadas durante la mañana, tarde y noche en la Tienda de Postres, los resultados son de las ventas generales, es decir incluyen la venta de todos los productos en stock.

Ten Paciencia, lo que quiero es que entiendas todo el proceso de como funciona la Ciencia de Datos (Data Science) en una caso similar a la realidad.

Nota (s)

  • En el siguiente capitulo terminare con el análisis de los Demás Datos pendientes.
  • Más adelante usaré herramientas de Visualización de Datos más especializadas en el área.

 

Síguenos en nuestras Redes Sociales para que no te pierdas nuestros próximos contenidos.

Newsletter

Suscríbete a Nuestro Boletín de Novedades:

(Luego de la suscripción no te va salir ningun mensaje. Solo revisa tu bandeja de Correo para confirmar tu suscripción)
* indicates required
Subscribirse
Notificar a
guest
1 Comment
antiguos
nuevos más votado
Inline Feedbacks
View all comments
trackback
Como hacer Análisis a los productos de una Tienda de Postres mediante Data Science – Parte 4 | Blog Nube Colectiva
9 meses atrás

[…] Como hacer Análisis a los productos de una Tienda de Postres mediante Data Science – Parte 912/12/2019 […]